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Summary 

Experiments cited in this paper reveal that aqueous foams are good attenuators of blast waves 
and the resulting noise. A model is presented which describes the behavior of an explosively pro- 
duced blast wave propagating through aqueous foam. The equation of state for an air/water mix- 
ture is developed with specific attention to details of liquid water compressibility. Solutions of the 
conservation equations in a spherically one-dimensional form were performed using a finite-dif- 
ference wave propagation code. Results are presented that indicate the effect of the foam expan- 
sion ratio as well as the dimensionless foam depth on the blast attenuation. The (limited) 
comparison of decibel level attenuation between the model and the experiments shows good 
agreement. 

Introduction 

Spherically symmetric blast waves resulting from explosions in air can cause 
serious damage to structures located many charge radii from the center. In 
addition, the blasts also produce significant levels of environmental noise at 
distances beyond the region of structural damage. Consequently, the areas 
where blast-producing activities (such as demolition work and ordnance dis- 
posal) can be conducted safely are limited. 

When a detonation wave propagating through a condensed explosive reaches 
the air/explosive interface, an intense shock wave with pressures of the order 
of hundreds of atmospheres is propagated radially outward through the air. It 
has been shown [l] that the strength of the blast wave can be greatly atten- 
uated by surrounding the explosive charge with aqueous foam. An aqueous 
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foam consists of a matrix of thin sheets of water encapsulating tiny pockets of 
air. By adding a surfactant to the water to increase the surface tension, foam 
can be produced in a wide variety of expansion ratios. These foams are most 
commonly produced by commercial fire-fighting equipment. The expansion 
ratio is defined as the ratio of foam volume to liquid volume 
a! = Q/U, (1) 

Raspet and Griffiths [ 1 ] summarize past experimental work on shock atten- 
uation and include extensive data on far field attenuation of peak pressure, flat 
weighted integrated sound exposure levels (FSEL) and C-weighted exposure 
levels (CSEL) for a variety of charge masses, foam depths and foam expansion 
ratios. Also presented are scaling laws which relate the foam depth, foam den- 
sity and charge mass to the noise reduction levels. 

Figures la-c show reduction levels for various depths of 30: 1 expansion ratio 
foam [ 11. In these figures the foam depth is scaled to the cube root of the 
charge mass. The experiments were conducted using three different charge 
masses, 0.11 kg, 0.57 kg and 2.27 kg. The reductions are plotted in dBs (deci- 
bels) with the peak pressure level defined as 20 log (Pap,,) where P,, is 
the maximum pressure and P,, is a reference pressure, P,, = 20 pPa. The sound 
exposure level (SEL) is defined as 

J”P2dt 
SEL = 10 log P2t 

0 0 
(2) 

where t, is a reference time defined to be one second. The integral in eqn. (2) 
is performed over the entire duration of the wave form, both positive and neg- 
ative phase. The FSEL is calculated with no frequency weighting and the CSEL 
is calculated with a standard C-weighting filter. In all configurations, two trials 
were performed and FSEL, CSEL and peak pressure were measured at both 
60 m and 120 m from the charge center. Figures 2a-c show the 30 : 1 data com- 
bined with data for a much less dense 250 : 1 foam. Here, the authors included 
foam density pf in the scaled depth. In Figs. 2a-c the dimensionless foam depth 
is defined as 

x = dr [p&l41 1’3 (3) 
where pf is the foam density [ kg/m3], dr is the geometrically averaged foam 
depth [m] , and M is the mass of the explosive [ kg] (TNT equivalent). 

In addition to peak pressure and sound exposure level reduction, Ref. [l] 
also notes a decrease in both the total and positive phase durations of the far 
field recorded wave form when foam is the wave propagation medium. Plotted 
as a function of scaled foam depth these dB reductions were 20% and 5%, 
respectively. As shown in Fig. 1, the maximum reductions in CSEL, FSEL and 
peak pressure were limited to about 10 dB. 

An interesting result presented in Ref. [ I] is that the attenuation is shown 
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Fig. 1. Reductions for (IL = 30 foam (from Ref. [ 1 ] ) . The scaled foam depth is defined as the ratio 
of foam depth d to the cube root of charge mass M. 

to be linear with scaled foam depth up to a certain nondimensional depth (0.8 
for 30: 1, 1.5 for 250: 1) . For depths greater than this the foam still shows 
increasing attenuation with depth but at a much less effective rate. A two- 
mechanism model was proposed [ 1 ] to explain this bilinear behavior. First, it 
was assumed that in the near-field the shock pressure is strong enough to break 
the foam structure into microdroplets across the compressive shear layer of 
the shock front. This insures an extremely quick equilibration of velocity and 
temperature betweeen the two phases and allows one to consider the air/water 
foam system as a homogeneous material. Second, when the shock is no longer 
strong enough to shatter the foam structure, it is assumed that the air and 
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DIMENSIONLESS FOAM DEPTH 

Fig. 2. Reductions versus dimensionless foam depth for a! = 30 and (Y = 250 foam (from Ref. [ 1 ] ) . 
Dimensionleas foam depth is defined in eqn. (3) of the text. 

water components do not achieve immediate equilibrium. This lessens the 
degree of attenuation. 

Much work has been done to explain the effectiveness of foam as a shock 
attenuator [ 2-41. These works include theories based on multiple reflections 
from bubble surfaces and broadening of the shock due to bubble resonances. It 
should be noted that these mechanisms only occur in the acoustic or near 
acoustic range of over-pressure and are probably not applicable to the extremely 
large overpressures encountered in explosively initiated shock waves. It was 
pointed out by Raspet and Griffiths [ 11 that the minimum shock strength 
needed to shatter the foam structure is on the order of several hundred kPa. 
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Explosive Charge 

Microphone 

Fig. 3. Schematic of explosive/foam configuration. 

Other experiments [ 5,6] have cited the vaporization of the water and the 
quenching of the afterburn as mechanisms which reduce the delayed energy 
imparted to the wave. We believe that the energy contribution by afterburn is 
a small percentage of the energy delivered by the initial detonation wave and 
is probably not the main mechanism for attenuation. The effects of vaporiza- 
tion will be examined in more detail later in this study. 

The work presented here is by no means a detailed study of the pore surface 
structure within the foam. Instead, emphasis is placed on the hydrodynamic 
wave interactions within the medium and between material interfaces. Based 
on the strength of the explosively driven shock wave through the foam, the 
hydrodynamic model appears to be a valid approach. The following sections 
will outline the problem analysis, numerical solution technique and some 
results. 

Analysis 

Figure 3 defines the problem at hand. Located at the r=O origin is a spherical 
charge of explosive with radius a,. Surrounding the explosive is a foam with 
expansion ratio cy and depth dr. Surrounding the foam is air. For this analysis, 
the initial time is taken as the instant the detonation wave reaches the explo- 
sive/foam interface (r= a,). The form of the detonation wave at this time is 
assumed to be the classical form of Taylor [ 71 for a spherical self-similar det- 
onation wave profile. The magnitude of the transmitted and reflected waves at 
the foam boundary are calculated from the Rankine-Hugoniot jump conditions 
and the equations of state for the two materials (explosive, foam). In order to 
study the wave motion beyond this initial time, one must solve the equations 
of motion, equations of state, and the appropriate boundary and initial con- 
ditions for the entire flow field. For a one-dimensional, spherically symmetric 
analysis the equations of motion in Eulerian form are-written as 



Conservation of muss 

Conservation of momentum 

!&+udu lap o 

6&Z= 
Conservation of energy 

(4) 

(5) 

(6) 

Eqwltion of state 

E = E(Q) (7) 

At r=O a reflected boundary condition is imposed and at r=R a transmitted 
boundary condition is used. Internal boundary conditions at the material 
interfaces require continuity of particle velocity, u and pressure. 

Along with appropriate initial conditions, the three nonlinear partial differ- 
ential equations and the equation of state form a set of four equations to be 
solved for the four unknown variables E, P, u, and p. In order to obtain an 
analytical solution to this set of equations, some very limiting assumptions 
must be made [ 8-131. A review of much of this work can be found in Ref. [ 141. 

The solution technique used in the work performed here is based upon the 
finite difference solution to the governing differential equations and consti- 
tutive relations. A brief discussion of the solution technique follows. 

Finite difference solution 

The finite difference code used to solve the blast attenuation processes is an 
adaptation of the one-dimensional WONDY V code developed at Sandia Lab- 
oratories [ 15 1. A detailed description of the operation of the code can be found 
in Ref. [ 15 1. A brief discussion of the computational scheme, stability and 
ideal form of the state equation will be presented here. 

The finite difference code is used to solve the set of one-dimensional equa- 
tions of motion in spherical geometry. The governing equations written in 
Lagrangian form are 

Conservation of mass 

m = m, (8) 
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Conservation of momentum 

pa 
ap aq =--_- 
ax ax (9) 

Conservation of energy 

p$ = (P+q)i 

Equation of state 

P = P(E,p) 

ap at (10) 

(11) 
Here, m represents the mass, p is the density, q is a viscous stress, P is the 
pressure, and E is the specific internal energy. 

In the finite difference approximation to the differential equations all quan- 
tities sampled are material particles at discrete times. The differential equa- 
tions are written in difference form by the use of centered, second-order analogs 
over a staggered computational grid. The space variables, a, u, and x (accel- 
eration, velocity, and spatial location) are located at the cell boundaries, and 
the thermodynamic variables, P, E and p are centered in each cell. 

Since the grid resolution of the code cannot be made small enough to accu- 
rately resolve the shock waves thickness, an apparent viscous stress q is intro- 
duced. This prevents the wave form from overtaking itself and increases 
computational stability by spreading the discontinuity across several cells. 
Shock waves in the finite difference solution are recognized as very steep but 
finite gradients in the solution. The form of q used in this work is 

q=c,c*~+c2p J* 

( > 

2 

P at 
if* >O 

at 

q=o if* <O 
at 

(124 

(12b) 

Here, C1 and C, are constants [ 15 ] and C, is the local sound velocity. In addi- 
tion to providing numerical stability, the apparent viscous stress also satisfies 
the entropy production across the shock front as dictated by the second law of 
thermodynamics. 

Equation of state for aqueous foam 

When a shock passes through a liquid-gas mixture, the liquid requires a 
finite time to equilibrate velocity and temperature with the gas. In the relax- 
ation zone, differences in velocity and temperature between the phases cause 
momentum and heat transfer which can have important effects on the result- 
ing two-phase flow field. Often these processes proceed very rapidly, particu- 



larly when one phase is finely dispersed in the other. When this happens it can 
be assumed that equilibrium is reached at the shock front and that the two 
component systems can be c6nsidered as a homogeneous pseudofluid that obeys 
the usual equations of single component flow. 

As stated earlier, aqueous foam consists.of a matrix of thin sheets of water 
encapsulating small pockets of air. In this analysis it is assumed that when a 
strong shock hits these thin sheets they are shattered into microdroplets by 
the viscous stress across the shock plane. This assumption is elaborated in Ref. 
[ 11. Because of the droplets’ size, they equilibrate very rapidly with the flowing 
gas. This assumption enables one to consider the system as an homogeneous 
entity, and thus use mass averaged thermodynamic properties to describe the 
system. These properties are weighted averages and are not necessarily the 
same as the properties of either phase. Pore surface structure is not treated in 
this work because of the strong shock overpressures. 

In order to analyze shock propagation through foam using a finite difference 
method, one must first develop an equation of state for the homogeneous pseu- 
dofluid using average properties of the air and water components. The equa- 
tion is then put in a form most amenable to hydrocode calculation, namely eqn. 
01). 

The task here is to find the fluid pressure given the fluid density and fluid 
internal energy using both the ideal gas equation of state with a nonconstant 
specific heat for air and an equation of state for water of the form 
[P,E] =f (T, u). Th e water equation of state was supplied by Sandia Labo- 
ratories [ 151 and was found to be consistent to the fifth significant digit when 
compared with tabulated values from steam tables by Keenan, Keyes, Hill and 
Moore [ 161. 

The equilibrium solution is found by satisfying the mixture mass (volume) 
and energy relations 

m&ure energy Ef = 23, + (1 - X) .E, 03a) 

mixture mass Uf = zu,+ (1--x)u, Wb) 

where x=mass fraction of air, E= specific internal energy, and u = specific 
volume. 

The subscripts f, a and w stand for fluid mixtures, air and water, respectively. 
In addition, we have the functional relations 

E, = f(T) = E,(T) 04a) 

Ew = f(T, u,) = E,(T, u,) (14b) 

u, = RT/P, (14c) 
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Fig. 4. Shock overpressure for various expansion ratio foema. For ell caees, Ar/a,= 40. 

pw = f(T, u,) = P,(T, u,) (14d) 
Assuming that the pressure and temperature of both phases are equal, we can 
rewrite the mass and energy relations as 

E f = x&(T) + o--x)E,(T, VW) (154 

RT 
uf = k.JT, u,) 

(l-x)u, (15b) 

The two equations are coupled through the fluid temperature, Z’, and the 
water specific volume, u,. This provides two equations in two unknowns, T 
and u,. The solution will yield the fluid pressure through the water equation 
of&at&P, (T,u,). 

Since the internal energy of water is dependent on both temperature and 
specific volume (due to phase change) the temperature cannot be solved directly 
from the energy equation. If this were the case, pressure could be solved for by 
satisfying the mass relation, varying u,. Since this is not possible, an iterative 
scheme must be employed to solve the two equations simultaneously. 

Computed results 

Figure 4 is a plot of the peak shock pressure as a function of distance from 
the charge center r=O. Three different expansion ratio foams (60,200,360) 



are shown in the figure. Each case illustrated in Fig. 4 has a foam depth of 
&/a, = 40. Figure 4 also includes a plot of the locus of the peak shock pressure 
in an air medium (no foam a! = co) for the same charge [ 111. The general 
trend is for the lower expansion ratio foams to start at a higher shock pressure 
than the air and higher expansion foams. The higher initial shock pressures 
for the lower expansion ratio foams is a result of the foam shock impedance 
and the product gas/foam interface boundary condition. Figure 4 also shows a 
break in the rate of pressure decrease at about 8 charge radii for the 60 : 1 foam; 
9 charge radii for the 200 : 1 foam; and 10 charge radii for the 360 : 1 foam. The 
rate of pressure decay increases after this point. Evaluation of the thermody- 
namic properties shows that this break occurs when the lead shock is no longer 
of sufficient strength to vaporize the foam. This attenuation mechanism 
becomes evident when studying the pressure, energy and velocity histories of 
the attenuating flow fields. 

Figures 5-7 show pressure, energy and density profiles for a constant expan- 
sion ratio ( 200 : 1) foam where the foam depth is 10 charge radii. In all six 
different depths were studied 5, 10, 15, 20, 30 and 40 charge radii, with the 
solutions integrated to a distance of 90 charge radii. Thermodynamic profiles 
for the remaining cases are not shown here, but can be found in Ref. [ 141. 
These calculations were performed in order to investigate the blast wave 
behavior at the foam/air interface and to observe the effects of different foam 
depths on the far field wave form. The initial blast wave for these calculations 
was determined from an equation of state for TNT used by Brode [ 131 starting 
at the initial conditions specified by Taylor [ 71. 

The results shown in Figs. 5-7 show the radial distance scaled to the initial 
charge radius. Pressure is scaled to ambient pressure ( 0,101 MPa ) and density, 
energy and time are left unscaled. Also r represents the elapsed time (IUS) since 
the detonation wave reached the explosive/foam interface. It should be noted 
that prior to solving the flow equations with foam as the propagation medium, 
a test case was run for a standard charge in dry air. This particular test of the 
finite difference code was made since the corresponding experimental results 
are well documented [ 171. The peak overpressures for this case were in favor- 
able agreement with experimental observations in both the near-field and far- 
field. 

Examining the results shown in Figs. 5-7, one can see that there is no sig- 
nificant difference in the pressure profiles other than that the second shock is 
attenuated more and is farther into the positive region as the depth increases. 
This does not explain the change in the rate of attenuation. However, inspec- 
tion of the internal energy variations offers an explanation of the phenomena. 

The increase in internal energy above the ambient is the last influence that 
the blast wave produces. The kinetic and thermal energy of the initial explosive 
products that goes into producing the blast wave will be distributed in the final 
state as an increase in the internal energy of the surrounding medium, When 
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Fig. 5. Shock overpressure history for 200: 1 expansion ratio foam, ArIo,,= 10. 
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Fig. 6. Specific internal energy history for 200 : 1 expansion foam, Ada, = 10. 

the shock wave passes a given location, it leaves the material at a pressure and 
energy determined by the jump conditions and the equation of state. When the 
medium expands back to ambient pressure, it returns some of this energy to 
the wave propagating ahead of it and retains some residual energy as a result 
of the irreversible heating caused by molecular shearing across the shock front. 
As the strength of the shock diminishes, the residual energy also diminishes. 
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Fig. 7. Density history for 200 : 1 expansion ratio foam, AI-/~, = 10. 

In this weak shock case the wave can be thought of as propagating acoustically 
with the attenuation mostly due to spherical divergence. The spike in the inter- 
nal energy-distance plots (Fig. 7) is due to the density discontinuity occurring 
at the material interface. 

In order to make a comparison of the computed foam depth attenuation 
effectiveness with the data reported by Ref. [ 1 J , the data shown in Fig. 8 are 
presented as reduction in dB peak level in Fig. 9. Here, the dB reduction is 
relative to the overpressure predicted for an r/a, of zero. Figure 8 shows this 
to be 185.8 dB. Thus, for example, a normalized foam depth of 10 would give a 
dB reduction of 185.8 - 183.2 = 2.6. The predicted dR reductions for five dif- 
ferent cases of r/u, are shown in Fig. 9. Also shown (as a solid line) for com- 
parison is the measured far-field peak level dB reduction for an cr = 250 foam, 
taken from Fig. 3 of Ref. [ 11. 

A least-squares fit of the predicted Peak Level Reduction (PLR) dB for nor- 
malized foam depths less than 25 is, 

(PLR)& = 0.28 (&,,/a,) -0.04 (16) 

In order to compare this with the data presented in Ref. [l] (as shown in 
Fig. 9) it was necessary to first carry out some conversions, since the data 
(Fig. 3 of Ref. [ 1 ] ) are presented as ( PLR)dB versus scaled foam depth 
( r/WI3 ) . This depth is the ratio of foam depth divided by the cube root of the 
explosive charge mass. In terms of that parameter, the best-fit equation for the 
cy = 250 foam was a far-field dB reduction that is given by 
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(PLR)cm = 6.33 ( Arf/M’/3 - 0.03) for 0 < Arf/Wf3 < 1.5 (17) 
Since the explosive used in the experiments was C-4, not TNT, it was neces- 
sary to scale the mass of C-4 to an equivalent TNT mass of TNT, MTNT = 1.35 
A&,. Therefore, to determine the equivalent charge radius, a, (as used in the 
computer prediction) 

MC-* u3 =. (&+&.3Ql’3 = 1.73 (47rpTm/3) %~ (18) 
Thus 1 kg of C-4 explosive is equivalent to a mass of TNT with a,* 0.04 m. 

When substituting this relation into eqn. (17) one obtains the experimental 
best least-squares fit, as 
(PLR)a = 0.366 (ArJq,) -0.19 forO<rla, <2B. (19) 

This equation is shown by the solid line in Fig. 9 and compares favorably with 
eqn. (16). 

Conclusions 

The results presented show an increase in the rate of attenuation after the 
shock no longer vaporizes the water component of the mixture, leading one to 
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Fig. 9. Comparison of the predicted decibel peak level reduction (in the “far-field”) with experi- 
ments from Ref. [ 1 ] (solid line). 

conclude that vaporization can in fact be detrimental to maximum attenua- 
tion. When the liquid component of the system vaporizes, the air is no longer 
loaded with a relatively incompressible material and the shock speed increases. 
This enables secondary shocks to catch up to and reinforce the main shock. 
This aspect of phase change is also detrimental to attenuation in the inter- 
mediate field. The greater propagation speed of the secondary shocks may also 
account for the reduced duration of the negative phase. 

The many wave reflections off the foam/air interface produce a complicated 
waveform in this region. However, it was noted that these disturbances rapidly 
decay into the air region and are small compared to the peak disturbance. For 
smaller foam depths the transmitted pressure is still high, and nonacoustic 
attenuation by the air adjacent to the foam occurs. 

A significant pressure drop occurs at the foam/air interface for small foam 
depths, and in this respect, the impedence mismatch between the air and the 
foam is important. However, for large foam depths, where the attenuation due 
to shock dissipation occurs solely in this region, the effects of reflections from 
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the foam/air surface and the impedence mismatch have little influence on the 
far field waveform. 

Two factors are responsible for determining the amount of residual heat left 
in the medium once the shock has passed. One is the thermodynamic proper- 
ties that influence the conditions across the shock discontinuity, For maxi- 
mum attenuation (for a given pressure) one would wish to maximize the rise 
in internal energy across the shock and minimize the drop in energy during 
isentropic expansion back to ambient pressure. This effect is determined solely 
by the equation of state of the medium. The other contributing factor is that, 
for the same material, a higher pressure shock produces a larger amount of 
residual energy. Thus, for large foam depths where interface interactions are 
minimal, the two most important factors contributing to high attenuation are 
a maximum initial overpressure and the ability to produce a high residual 
energy. In addition, the lower expansion ratio foams attenuate more than light 
foams for two possible reasons. The first is that the initial over-pressure is 
higher and the second is that for a given pressure, more residual energy is 
produced. It is likely that both factors contribute. 

Beyond a certain foam depth the amount of residual energy left in the region 
of expanded foam drops sharply. Most of the energy imparted to the foam by 
the shock is then returned to the wave upon expansion. Attenuation past this 
point is due mostly to divergence. 
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